sam.nitk.ac.in

Mathematical Methods for Engineers (MA 713) Problem Sheet - 8

Composition of Linear Transformations and Matrix Multiplication

- 1. Label the following statements as true or false. In each part, *V*,*W*, and *Z* denote vector spaces with ordered (finite) bases α , β , and γ , respectively; $T : V \rightarrow W$ and $U : W \rightarrow Z$ denote linear transformations; and *A* and *B* denote matrices.
 - (a) $[UT]^{\gamma}_{\alpha} = [T]^{\beta}_{\alpha}[U]^{\gamma}_{\beta}.$
 - (b) $[T(v)]_{\beta} = [T]^{\beta}_{\alpha}[v]_{\alpha}$ for all $v \in V$.
 - (c) $[U(w)]_{\beta} = [U]^{\beta}_{\alpha}[w]_{\beta}$ for all $w \in W$.
 - (d) $[I_V]_{\alpha} = I$.
 - (e) $[T^2]^{\beta}_{\alpha} = ([T]^{\beta}_{\alpha})^2$.
 - (f) $A^2 = I$ implies that A = I or A = -I.
 - (g) $T = L_A$ for some matrix A.
 - (h) $A^2 = O$ implies that A = O, where O denotes the zero matrix.
 - (i) $L_{A+B} = L_A + L_B$.
 - (j) If *A* is square and $A_{ij} = \delta_{ij}$ for all *i* and *j*, then A = I.
- 2. Let g(x) = 3 + x. Let $T : P_2(\mathbb{R}) \to P_2(\mathbb{R})$ and $U : P_2(\mathbb{R}) \to \mathbb{R}^3$ be the linear transformations respectively defined by

$$T(f(x)) = f'(x)g(x) + 2f(x)$$
 and $U(a + bx + cx^2) = (a + b, c, a - b).$

Let β and γ be the standard ordered bases of $P_2(\mathbb{R})$ and \mathbb{R}^3 , respectively.

- (a) Compute $[U]^{\gamma}_{\beta}, [T]_{\beta}$, and $[UT]^{\gamma}_{\beta}$ directly. Verify that $[UT]^{\gamma}_{\beta} = [U]^{\gamma}_{\beta}[T]_{\beta}$.
- (b) Let $h(x) = 3 2x + x^2$. Compute $[h(x)]_{\beta}$ and $[U(h(x))]_{\gamma}$. Then use $[U]_{\beta}^{\gamma}$ from (*a*) and Theorem 2.14 to verify your result.
- 3. Let

$$\alpha = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\},$$

$$\beta = \{1, x, x^2\},\$$

and

 $\gamma = \{1\}.$

Compute the following vectors:

(a)
$$[T(A)]_{\alpha}$$
, where $A = \begin{pmatrix} 1 & 4 \\ -1 & 6 \end{pmatrix}$ and $T: M_{2 \times 2}(F) \to M_{2 \times 2}(F)$ defined by $T(A) = A^t$.

- (b) $[T(f(x))]_{\alpha}$, where $f(x) = 4 6x + 3x^2$ and $T : P_2(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ defined by $T(f(x)) = \begin{pmatrix} f'(0) & 2f(1) \\ 0 & f''(3) \end{pmatrix}$.
- (c) $[T(A)]_{\gamma}$, where $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ and $T : M_{2 \times 2}(F) \to F$ defined by T(A) = tr(A).
- (d) $[T(f(x))]_{\gamma}$, where $f(x) = 6 x + 2x^2$ and $T: P_2(\mathbb{R}) \to \mathbb{R}$ defined by T(f(x)) = f(2).
- 4. Find linear transformations $U,T : F^2 \to F^2$ such that $UT = T_0$ (the zero transformation) but $TU \neq T_0$. Use your answer to find matrices *A* and *B* such that AB = O but $BA \neq O$.
- 5. Let *A* be an $n \times n$ matrix. Prove that *A* is a diagonal matrix if and only if $A_{ij} = \delta_{ij}A_{ij}$ for all *i* and *j*.
- 6. Let *V* be a vector space, and let $T : V \to V$ be linear. Prove that $T^2 = T_0$ (the zero operator) if and only if $R(T) \subseteq N(T)$.
- 7. Let *V*, *W*, and *Z* be vector spaces, and let $T : V \to W$ and $U : W \to Z$ be linear.
 - (a) Prove that if *UT* is one-to-one, then *T* is one-to-one. Must *U* also be one-to-one?
 - (b) Prove that if *UT* is onto, then *U* is onto. Must *T* also be onto?
 - (c) Prove that if *U* and *T* are one-to-one and onto, then *UT* is also.
- 8. Let *A* and *B* be $n \times n$ matrices. Prove that tr(AB) = tr(BA) and $tr(A) = tr(A^{t})$.
- 9. (a) Suppose that *z* is a (column) vector in F^p . Prove that *Bz* is a linear combination of the columns of *B*. In particular, if $z = (a_1, a_2, ..., a_p)^t$, then show that

$$Bz = \sum_{j=1}^{p} a_j v_j$$

- (b) Extend (a) to prove that column *j* of *AB* is a linear combination of the columns of *A* with the coefficients in the linear combination being the entries of column *j* of *B*.
- (c) For any row vector w ∈ F^m, prove that wA is a linear combination of the rows of A with the coefficients in the linear combination being the coordinates of w.
 Hint: Use properties of the transpose operation applied to (a).
- (d) Prove the analogous result to (b) about rows: Row *i* of *AB* is a linear combination of the rows of *B* with the coefficients in the linear combination being the entries of row *i* of *A*.
- 10. Let *M* and *A* be matrices for which the product matrix *MA* is defined. If the *j*th column of *A* is a linear combination of a set of columns of *A*, prove that the *j*th column of *MA* is a linear combination of the corresponding columns of *MA* with the same corresponding coefficients.
- 11. Let *V* be a finite-dimensional vector space, and let $T : V \rightarrow V$ be linear.
 - (a) If $rank(T) = rank(T^2)$, prove that $R(T) \cap N(T) = \{0\}$. Deduce that $V = R(T) \oplus N(T)$.
 - (b) Prove that $V = R(T^k) \oplus N(T^k)$ for some positive integer *k*.
- 12. Let *V* be a vector space. Determine all linear transformations $T : V \to V$ such that $T = T^2$. Hint: Note that x = T(x) + (x - T(x)) for every *x* in *V*, and show that $V = \{y : T(y) = y\} \oplus N(T)$.
- 13. Using only the definition of matrix multiplication, prove that multiplication of matrices is associative.

- 14. For an incidence matrix *A* with related matrix *B* defined by $B_{ij} = 1$ if *i* is related to *j* and *j* is related to *i*, and $B_{ij} = 0$ otherwise, prove that *i* belongs to a clique if and only if $(B^3)_{ii} > 0$.
- 15. Use the above exercise to determine the cliques in the relations corresponding to the following incidence matrices.

<i>(a)</i>	/0	1	0	1		/0	0	1	1
	1	0	0	0	(h)	1	0	0	1
	0	1	0	1	(b)	1	0	0	1
	$\backslash 1$	0	1	0/		$\backslash 1$	0	1	0/

- 16. Let *A* be an incidence matrix that is associated with a dominance relation. Prove that the matrix $A + A^2$ has a row [column] in which each entry is positive except for the diagonal entry.
- 17. Prove that the matrix

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

corresponds to a dominance relation. Use the above exercise to determine which persons dominate [are dominated by] each of the others within two stages.

18. Let *A* be an $n \times n$ incidence matrix that corresponds to a dominance relation. Determine the number of nonzero entries of *A*.
